关于四年级数学说课稿范文汇总九篇
作为一名专为他人授业解惑的人民教师,就有可能用到说课稿,编写说课稿是提高业务素质的有效途径。我们该怎么去写说课稿呢?以下是小编整理的四年级数学说课稿9篇,希望能够帮助到大家。
四年级数学说课稿 篇1一、教材内容及编排意图:
《求小数的近似数》是义务教材人教版数学四年级下册第四单元第五节的内容。是学生已经掌握了用四舍五入法求整数近似数后的一次扩展,同时又为后面改写成以万和亿作单位的数做好知识铺垫。教材内容展示了豆豆测量身高这一现实情境,说明小数的近似数在实际测量当中有着广泛的应用,从而加深对小数的认识,进一步培养学生的数感。
二、教学目标的设定:
1.结合具体情境理解小数近似数的意义,掌握求小数近似数的方法,理解并应用“四舍五入”法求小数的近似数,知道精确度的含义。
2.经历类比迁移求小数近似数的过程,通过观察、发现、讨论交流等数学活动培养学生推理及概括能力,初步掌握“迁移”、“数形结合”等学习数学的方法。
3.感受近似数的实际意义,体会数学与生活的密切联系,激发学习兴趣,培养学生的数感。
三、教学重点:
1.理解并应用“四舍五入”法求小数的近似数。
2.理解求小数的近似数时,近似数末尾的0不能省略的道理。
四、教学难点:
理解求一个数的近似数时,近似数末尾的0不能省略的道理。
五、教学流程:
在这节课中,我采用五环节教学,即“创设情境,提出问题——小组合作,探究新知——回归情景,深化理解——反馈练习,拓展提升——课堂总结,回归生活”。具体设计是:
一、创设情境,提出问题:
通过观察主题图,学生明确了用 0.984米、0.98米和1米三个数据都能表示豆豆身高后提出问题:他们是怎样得到豆豆身高的近似数的?引出课题,激发学生对求小数近似数的探究欲望。
二、小组合作,探究新知
1.由整数类比迁移到小数
在回顾了用四舍五入法求整数近似数的方法后,做出强调:求近似数一定要用约等号来连接。随机提出猜想:求小数的近似数是否也会用到四舍五入法呢?
2、自主探究,保留一位小数
接着让学生根据以往的知识经验进行自主探究:保留一位小数求近似数。在充分理解了保留一位小数就是精确到十分位的含义后放手让学生探究,相互交流,汇报时,重视引导学生进行有条理的完整的叙述。由于学生能够在求整数近似数的基础上进行类比迁移,这一环节表述的比较完整,能轻松的将内部思考过程外化为语言表达。
3、汇报交流,提炼方法
接着引导学生观察板书、回顾求1.93和16.195近似数的过程比较讨论得出共性,都是按要求保留一位小数,都要看到小数部分的百分位?不同点是:一个运用四舍法求到的近似数会小于原数,一个运用五入法求到的近似数会大于原数,在讨论交流中,学生明确了四舍五入法仍然是求小数近似数的方法。
4、借用数轴,直观理解
(1)直观发现1.93距1.9更近
但为什么求近似数省略部分的最高位小于5时要四舍,不小于5时要五入呢?在提出这一问题后,学生还是会从四舍五入的方法本身进行思考和解答?是知其然不知其所以然,这时,数轴便是一个很好的突破口,借用动态的设计,数形结合,让学生直观感受到因为1.93的位置更接近1.9,所以1.93保留一位小数后约是1.9。
(2)直观列举,体味“四舍五入”的道理
在学生能从“四舍”,和“五入”两个角度思考出近似数是1.9的两位小数后,也更容易思考出近似数是1.9的最大两位小数和最小两位小数是多少。
(3)理解保留一位小数为何只看百分位
从而得出:因为百分位的数决定了原数的位置,所以无论是几位小数在求近似数时,只要保留一位小数只需要看百分位的结论。进而小结出保留一位小数求近似数的方法后,又让学生再类比迁移,得出保留其他位数的方法。
5、类比迁移,尝试归纳
接下来,充分运用练习题的辐射作用引发学生的逆向思考:你能找到能保留三位或四位小数的数吗?为什么?明确原小数至少应该比保留后的近似数多一位。
三、回归情景,深化理解
在学生类推到保留整数的方法后,回归情景图中提出的问题,由0.984怎样想到0.98的,又怎样想到1的呢?这时,学生已能较熟练地解决这一问题。在找到0.984保留一位小数的近似数后,再一次引导观察、比较发现:同一个数因为要求不同,会有不同的近似数,但保留位数越多,就越接近准确数,开始的结论是根据小数的性质结果近似数末尾的0能够去掉:经过讨论后发现因为保留位数的需要(即占位的需要)不能去掉。在此,又借用数轴直观演示近似数为1.0和1的准确数范围,让学生感知到:保留的位数越多,准确数的范围就越小,相应的精确度也就越高。从而得出结论:在求近似数时小数末尾的0不能去掉。
最后提出问题:回想求小数近似数的过程,和求整数近似数的方法相同吗?从而建构起数学知识间的前后联系。
随后,学生自主看书学习,进行查漏补缺。
四、反馈练习,拓展提升
以闯关形式设计的反馈练习富有层次性,思考性,体现变化,能让学生在多种变式中体会用四舍五入法求近似数的实质。体会到运用所学知识胜利闯关带来的成就感,但因为时间的关系,没有给学生更充分的表述机会,不能不说是一种遗憾!
五、课堂总结,回归生活。
本课的最后一次讨论是在本课结束,寻找小数近似数在生活中的应用——购买商品时该付8.953元的究竟会付多少钱呢?由于实际生活的需要,学生会考虑付9.00元。虽然付8.95元相对来说更实惠一些,但实际上5分的钱数已很少见,所以会保留整数付钱更符合生活实际情况,这样,就让数学知识富于了鲜活的生活气息。
总之,求小数的近似数内容抽象,本课着重引导了学生在疑惑处、重点处、难点处进行讨论,重视对知识源点的梳理,力争让学生理解:求近似数要用“四舍五入法”,以及为什么用“四舍五入法”。我的说课结束,谢谢大家!
四年级数学说课稿 篇2一、内容
今天我说课的内容是苏教版小学数学四年级下册第68—69页《图案欣赏和设计》。
二、教材分析:
本课是一节数学综合实践活动,是在学过的平面图形和利用平面图形进行对称,平移和旋转的基础上,达到欣赏、设计美丽图案的目的,也就是从动态变化的角度去探索和认识空间与图形。数学综合实践活动的目的是让学生体会数学与现实生活的联系,树立正确的数学观。本节教材活动内容由三部分组成:
1.欣赏美丽图案。
2.学习设计图案。
……此处隐藏10091个字……与未知、求与不求,使这一矛盾双方和谐地处于同一方程中。三、流程设计:
为了更好地引发学生的思考,提高学生解决问题的能力,我做了如下的设计:
(一)引“典”激趣,诱发思考。
引用“曹冲称象”的故事,提出解决问题的策略,寻找相等关系,同时激发学生学习的兴趣。
(二)探究新知,建立概念。
1、借助天平,启发思考。
我将教材情境动态化,通过FLANSH课件,让学生充分感知当天平两端都没放物品的时候天平左右两边是平衡的。当我们往天平的一端放上物品而另一端不放的时候,或者两端放的物品质量不等的时候,天平的两臂不平衡,表示两边物体的质量不相等。这时候左边大于右边,或右边大于左边。当我们经过调整,天平两臂再次平衡时,表示两边的物体质量相等,即左边=右边。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。同时,对情境中数据也进行了分批给出的处理。先给出了左边鱼食和小砝码的重量,让学生用一个数学表达式来表示天平左边的质量,再给出天平右边的质量,让学生列出等式。这样就较好地避免了学生习惯性的使用算术的思维方式,同时也顺利地进行了用数字表示向用符号表示的转化。在这一情境的教学中,借助天平这一载体,启发学生理解了平衡,认识了等式。
第二个主题图是本节课教学的核心内容。首先,我引导学生在情境中找出文字信息“4块月饼的质量一共是380克”。然后引导学生结合情境图,把这一信息转化为等量关系。4块月饼的质量是如何表示的呢?用数量关系“每块月饼的质量×4”来表示,“每块月饼的质量×4”表示的是4块月饼的质量,380克也表示4块月饼的质量,所以他们相等。从而完成数量关系向等量关系的转化,算术思想向代数思想的转化,改变学生的长达4年的惯性思维方式。
3、变换角度,深入思考。
第三幅情境图隐含着多样的等量关系,也正是引发学生数学思考的最佳情境。根据学生认识的深入程度,可适当让学生体会到等式的“值等”和“意等”,并放手让学生探究,根据不同的认识找到不同的等量关系,列出等量关系不同的同解方程。在教学中,先引导孩子发现情境中的基本相等关系:2瓶水的水量+一杯水的水量=一壶水的水量,并且列出等式2z+200=20xx,在此基础上,再引导孩子发现其他的等量关系。在这一过程中,充分激发孩子探求知识的欲望,调动孩子思考的主动性和灵活性,从而找到多样化的等量关系,并进一步提高孩子解决数学问题的能力。
4、建立概念,判断巩固。
在前面教学的基础上总结、抽象出方程的含义。通过三道例题的简洁数学式子表达,让小组合作寻找他们的共同特点,从而建立方程的概念。“含有未知数”与“等式”是方程概念的两点最重要的内涵。并通过“练一练”让学生直接找出方程。
(三)生活应用,提高能力。
数学应该服务于生活,紧接着我让同学们根据直观图象列方程。这些题目都来自于生活实际,并且分别以现实情境图、线段、文字叙述、综合拓展为顺序,层层递进。学生在用方程表示直观情境里的相等关系后,他们在写方程时会更加关注方程的本质属性,从而巩固方程的概念。练习强调学生在按照“数量关系—等量关系—方程”这样一个过程,通过想一想,找一找,说一说,写一写等不同的形式学会用方程来表示生活中的实际问题,并体会到方程的作用,为以后运用方程解决实际问题打下坚实基础。
附板书:
方程
含有未知数的等式叫方程。
左边的质量=右边的质量 两瓶水的水量+一杯水的水量=一壶水的水量
四年级数学说课稿 篇9我执教的是北师大版四年级上册《平移与平行》,这部分的教学内容是在学生学习了平移又认识了直线、线段、射线的基础上进行学习的。
我设计本课的教学目标为:
1、借助生活情境和操作活动,认识平行,感知平行线的特征。结合具体情境和操作活动,认识两条直线互相平行的位置关系;学会用三角尺画平行线。
2、在探索活动中,培养学生观察、操作、想像等能力;培养空间想象能力与联系实际的意识和能力。感受数学的价值,培养学习数学的兴趣。
3、体会数学源于生活又用于生活。了解平行线在生活中的应用,能在生活中找到平行线的实例。
教学重点是:认识平行线的特点。
教学难点是:会用三角板画平行线。
根据教材内容和教学目标我设计了五个环节,首先通过“看一看”让学生观察双杠发现平行线的特征,学生已经学习了物体的运动方式:平移和旋转。通过“平移”得到“平行”;平移是过程,平行是结果。巧妙沟通了新旧知识的联系,在我们习以为常的平移铅笔的这个动作里就产生了平行!继此,学生也能充分体验平行线的本质特征:距离处处相等,并以此作为教学的起点;再通过实际操作“试一试”“折一折”,进一步让学生体会平行线的特征;通过后面的:“画一画”让学生学会画平行线,达到知识与技能的结合;在此基础上让学生“说一说”知道在我们生活中,每天都可以看到各种各样的平行线,体会数学与生活的密切联。
本节课的教学中,我注重渗透新课程理念,大胆开放自主探索空间,实现数学学习的“再创造”。具体体现在以下三个方面的课堂教学过程
· 一、 创设情境,架起新知与旧知的桥梁。
《数学课程标准》指出:“数学教学,要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,以及学好数学的愿望。”根据这一理念,我在新课导入时,让学生观察双杠的两根杠有什么特点再平移铅笔、从中使学生抽象出平行线的特点和它与平移的关系,不仅架起了新知与旧知的桥梁,拉近了数学与生活的距离,更让学生对数学产生了亲近感,激发了他们主动的探索欲望。
二、强化动手实践,拓宽探究空间。
《标准》指出:“学生的学习过程应是一个主动建构知识的过程,必须在学生认知发展水平和已有知识经验的基础上,为学生提供从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握数学知识。”根据这一理念,我在教学中注重为学生自主探究提供充分的时间和空间。例如上课一开始,我让学生根据原有平移知识观察平移铅笔,从中发现平移与平行关系。再让学生通过“找一找”“折一折” “画一画”“说一说”的实践活动,经历从具体形象的操作中抽象内化平行与平移关系和平行的特点,不仅让学生感受到数学活动的探究性和创造性,而且体验到自已是数学学习的主人。
三、让学生经历数学学习的“再创造”过程。
学生的数学学习应该是一种“再创造”的过程。在教学中,我让学生通过自已的观察和探索,自主发现、合理建构数学知识,例如在教学平行线的画法过程中,我并没有直接地讲授画法,而是让学生在已有基础上先独立尝试,发现问题后,引导学生自已来尝试解决问题,让学生经历了问题研究的整个过程,不仅有利于学生的理解和掌握,更加锻炼了学生的思维能力。
文档为doc格式